{- A list of selected functions from the Haskell modules: not Bool -> Bool
Prelude, Data.{List, Maybe, Char} -} not True = False
—— not False = True
-- standard type classes
class Show a where S oo
show :: a -> String
-- functions on Maybe
class Eq a where data Maybe a = Nothing | Just a
(==), (/=) a -> a -> Bool
isJust :: Maybe a -> Bool
class (Eq a) => Ord a where isJust (Just a) = True
(<), (=), (>=), a -> a -> Bool isJust Nothing = False
max, min a ->a -> a
isNothing :: Maybe a -> Bool
class (Eq a, Show a) => Num a where isNothing = not . isJust
), (), ta->a->a
negate a -> a fromJust Maybe a -> a
abs, signum a -> a fromJust (Just a) = a
fromInteger Integer ->
maybeTolist :: Maybe a -> [a]
class (Num a, Ord a) => Real a where maybeToList Nothing = []
toRational a -> Rational maybeTolList (Just a) = [a]
class (Real a, Enum a) => Integral a where listToMaybe :: [al] -> Maybe a
quot, rem a ->a -> a listToMaybe [] = Nothing
div, mod a ->a ->a listToMaybe (a:_) = Just a
toInteger :: a -> Integer

class (Num a) => Fractional a where -- a hidden goodie

D) ::a -> a -> a
fromRational Rational -> a instance Monad [] where
return x = [x]
class (Fractional a) => Floating a where xs >>= f = concat (map f xs)
exp, log, sqrt ::a -> a
sin, cos, tan tioa ->a T oo

-- functions on pairs

class (Real a, Fractional a) => RealFrac a where

truncate, round :: (Integral b) => a -> b fst :: (a, b) -> a

ceiling, floor (Integral b) => a -> b fst (x, y) = x
——— snd :: (a, b) -=>b
-- numerical functions snd (x, y) =y
even, odd (Integral a) => a -> Bool curry (Ca, b) -=>c¢c) ->a ->b ->c¢
even n =n ‘rem¢ 2 == curry f xy = f (x, vy)
odd = not even
——— uncurry it (a -=>b ->c¢c) -> (a, b) > ¢
-- monadic functions uncurry f p = f (fst p) (snd p)
sequence Monad m => [m a] -> m [a] -- functions on lists
sequence = foldr mcons (return [])

where mcons p g = do x <- p; Xxs <- q; map :: (a -> b) -> [al -> [b]
return (x:xs) map f xs = [f x | x <- xs]
sequence_ Monad m => [m al -> m () (++) :: [al -> [al -> [a]
sequence_ xs = do sequence xs; return () XS ++ ys = foldr (:) ys xs
—— filter (a -> Bool) -> [a] -> [a]
-- functions on functions filter p xs =[x | x <= xs, p x]
id ::a -> a concat [[al]l -> [a]
id x = X concat xss = foldr (++) [] xss
const :ra ->b ->a concatMap :: (a -> [bl) -> [a]l -> [b]
const x _ = X concatMap f = concat map f
.) :: (b ->¢) -> (a ->b) ->a ->c head, last [al -> a
f . g = \x -> f (g x) head (x:_) = X
flip :: (a -=>b ->c¢c) ->b ->a ->c¢ last [x] = X
flip f x y = f y x last (_:xs) = last xs
(%) :: (a ->b) ->a ->b tail, init [al -> [a]
f$ x = f x tail (_:xs) = Xxs
——— init [x] = []
-- functions on Bools init (x:xs) = X init xs
data Bool = False | True null :: [al -> Bool
null [] = True

K&, (1D Bool -> Bool -> Bool null (_:_) = False
True && x = X
False && _ = False length [al -> Int
True || _ = True length [] =0
False || x = x length (_:1) =1 + length 1

o [al -> Int -> a

(x:_) !l o = x

(_:xs) !!'n = xs !l (n-1)

foldr :: (a -=>b ->b) -=>b ->[a]l -> b
foldr f z [] =z

foldr f z (x:xs) = f x (foldr f z xs)

foldl :: (a ->b ->a) ->a ->[b]l -> a
foldl f z [] =z

foldl f z (x:xs) = foldl f (f z x) xs

iterate (a -> a) -> a -> [a]

iterate f x = X iterate f (f x)

repeat ;i a -> [a]

repeat x = xs where xs = x:xs
replicate Int -> a -> [a]

replicate n x = take n (repeat x)

cycle [al -> [al
cycle [] = error "Prelude.cycle: empty list”
cycle xs = xs’ where xs’ = xs++xs’
take, drop Int -> [a] -> [a]
take n _ | n <=0 = [1]
take _ [] =[]
take n (x:xs) = x : take (n-1) xs
drop n xs | n <= 0 = Xs
drop _ [1] = [1]
drop n (_:xs) = drop (n-1) xs
splitAt Int -> [al -> ([al,[al)
splitAt n xs = (take n xs, drop n xs)
takeWhile, dropWhile :: (a -> Bool) -> [a]l -> [a]
takeWhile p [] =[]
takeWhile p (x:xs)
| p x = X takeWhile p xs
| otherwise = [1
dropWhile p [] [1

dropWhile p xs@(x:xs’
[p x

I~ 1

dropWhile p xs’

| otherwise = Xs
lines, words String -> [String]
-- lines "apa\nbepa\ncepa\n” == ["apa”,b"bepa”,"cepa"]
-- words "apa bepa\n cepa” == ["apa","bepa”,"cepa"]
unlines, unwords [String] -> String
-- unlines ["apa”,"bepa”,"cepa”] == "apa\nbepal\ncepa”
-- unwords ["apa"”,"bepa","cepa”] == "apa bepa cepa”
reverse [a]l -> [a]
reverse = foldl (flip (:)) [1]
and, or [Bool]l -> Bool
and = foldr (&&) True
or = foldr (]]|) False
any, all :: (a -> Bool) -> [a] -> Bool
any p = or map p
all p = and map p
elem, notElem (Eq a) => a -> [al] -> Bool
elem x = any (== x)
notElem x = all (/= x)
lookup (Eq a) => a -> [(a,b)] -> Maybe b

lookup key [1] = Nothing
lookup key ((x,y):xys)
| key == x = Just y
| otherwise = lookup key xys

sum, product (Num a) => [a]l -> a
sum = foldl (+) ©
product = foldl (*) 1
maximum, minimum (Ord a) => [al -> a

maximum [] = error "Prelude.maximum: empty list”

maximum xs

minimum []
minimum xs

zip
zip

zipWith
zipWith z (a:as)
zipWith -
unzip

unzip

(L1,IH

nub
nub [1]
nub (x:xs)

delete
delete
delete

y [1
y (x:xs)

AN
(QRY)

union
union xs ys

intersect
intersect xs ys

intersperse
-- intersperse 0

transpose
-- transpose [[1,

= foldll max xs

= error "Prelude.minimum: empty list”

= foldll min xs

:: [al -> [b]l -> [(a,b)]

= zipWith (,)

: (a->b->c) -> [al->[bl->[c]

(b:bs)

=z ab zipWith z as bs

= [1]

:: [(a,b)] -> (Lal,[bD)

= foldr (\(a,b) “(as,bs) -> (a:as,b:bs))

:: (Eq a) => [a]l -> [a]

= [1]

= X nub [y | y <- xs, x /=y]

:: Eq a => a -> [a] -> [a]

= [1]

= if x ==y then xs else x delete y xs
Eq a => [a]l -> [al-> [al

= foldl (flip delete)

it Eq a => [a]l -> [a] -> [a]
= xs ++ (ys \\ xs)
Eq a => [al -> [al-> [a]
= [x | x <- xs, x ‘elem* ys 1]
[a]l] -> [a]

[1,2,3,4] == [1,0,2,0,3,0,4]
[[al]

: -> [[al]
2,31,[4,5,61]1 ==

[C1,431,02,5],03,61]

partition (a -> Bool) -> [a]l -> ([al,[a
b}

partition p xs = (filter p xs, filter (not . p)
XS)

group Eq a => [al -> [[a]ll

-- group "aapaabbbeee” == ["aa","p","aa","bbb","eee"]

isPrefix0f, isSuffixOf Eq a => [a] -> [a] -> Bool

isPrefix0f []1 _ = True

isPrefix0f _ [] = False

isPrefix0f (x:xs) (y:ys) = x ==y && isPrefix0f xs ys

isSuffix0f x y = reverse x ‘isPrefixOf‘ reverse
y

sort (Ord a) => [a]l -> [a]

sort = foldr insert []

insert (ord a) => a -> [a]l -> [a]

insert x [] = [x]

insert x (y:xs)
insert x xs

= if x <=y then x:y:xs else y:

-- functions on Char

type String = [Char]

toUpper, tolLower Char -> Char
-- toUpper ’a’ == A’

-- tolLower ’Z’ == 'z’
digitTolInt Char -> Int
-- digitToInt ’8’ == 8

intToDigit :: Int -> Char
-- intToDigit 3 == ’3’

ord Char -> Int
chr Int -> Char

