
Example Solution to Exam in EDA150 C Programming

Janurary 12, 2011, 14-19

Inga hjälpmedel!

Examinator: Jonas Skeppstedt, tel 0767 888 124

30 out of 60p are needed to pass the exam.

General Remarks

• A function which may crash gets −2 points while normal minor errors get −1
point. For each question you receive at least zero points.

• Memory allocations from the heap should be checked but errors made by
programmers using your code should not be checked unless requested. For
example, if a list has a special head node which should always be non-null,
then your code should not check that it is.

1. (20p) Write code to allocate and deallocate two-dimensional arrays of double
precision floating point numbers, setting and getting matrix elements, and to
add two such matrices. The number of rows and columns should be specified
when a matrix is allocated. The type of the function to add two matrices
should be as below and you decide the types of the other functions and the
type matrix_t

matrix_t* add(matrix_t* a, matrix_t* b);

Answer:

#include <stdio.h>
#include <stdlib.h>

typedef struct {
size_t rows;
size_t cols;
double ** a;

} matrix_t;

void error(const char* msg)
{

fprintf(stderr , "error: %s\n", msg);
exit (1);

}

1

matrix_t* new_matrix(size_t rows , size_t cols)
{

matrix_t* a;
size_t i;

a = malloc(sizeof(matrix_t));

if (a == NULL)
error("out of memory");

a->rows = rows;
a->cols = cols;

a->a = malloc(rows * sizeof(double *));
if (a->a == NULL)

error("out of memory");

for (i = 0; i < rows; ++i) {
a->a[i] = calloc(cols , sizeof(double));
if (a->a[i] == NULL)

error("out of memory");
}

return a;
}

void free_matrix(matrix_t* a)
{

size_t i;

for (i = 0; i < a->rows; ++i)
free(a->a[i]);

free(a->a);
free(a);

}

2

matrix_t* add(matrix_t* a, matrix_t* b)
{

matrix_t* c;
size_t i;
size_t j;

c = new_matrix(a->rows , a->cols);

for (i = 0; i < c->rows; ++i)
for (j = 0; j < c->rows; ++j)

c->a[i][j] = a->a[i][j] + b->a[i][j];

return c;
}

2. (20p) Give brief descriptions of the following.

(a) Bit-field
Answer: see book

(b) Compound literal
Answer: see book

(c) Static storage duration
Answer: see book

(d) Variable length arrays
Answer: see book

(e) ~ operator
Answer: see book

(f) continue statement
Answer: see book

(g) inline function specifier
Answer: see book

(h) _Bool type
Answer: see book

(i) char type
Answer: it’s either a signed or an unsigned integer type of size one byte, i.e.
at least 8 bits wide (that is the definition of a byte in the ISO C Standard).
Note that it’s neither one of signed char nor unsigned char but a
distinct type (which means pointer assignments mixing char* and for
example signed char* are invalid).

(j) a = *b++ expression
Answer: Read the value pointed to by b, copy it to a and then increment b.

3. (5p) Suppose you wish to have an array allocated with malloc aligned on a
32-byte boundary. How can you achieve that in a portable way? Show code.

3

Answer: We cannot use pointer arithmetic to achieve alignment so we must cast
the pointer to an integer type. With a too narrow type the function will not
work correctly and with a too large type it will be slower than needed. The most
suitable type is uintptr_t, see book.

To be able to deallocate the original pointer we must keep the value, hence the
last parameter.

#include <stdlib.h>
#include <stdint.h>

void* malloc_aligned(size_t n, size_t a, void** ptr)
{

uintptr_t b;
void* p;

n += a-1;

*ptr = p = malloc(n);
b = (uintptr_t)p;
b += a-1;
b &= ~(a-1);
p = (void*)b;

return p;
}

int main(void)
{

void* p;
void* q;

p = malloc_aligned (128, 32, &q);

/∗ . . . ∗/

free(q);

return 0;
}

4. (5p) Array parameters are automatically converted to pointers in C. Why is it
so and what can you do if you really want to pass an array to a function that
should get its own copy of the array (just like an int-parameter is copied
and modifiying the parameter does not affect the copied value).

Answer:

4

Passing complete arrays can be inefficient and therefore only a pointer to the
first array element is passed. To really pass an array, it can be put in a struct
which is copied, or at least the compiler produces code which behaves as if it is.

5. (10p) What is a flexible array member and why can you not have an array
of such structs? If you want to have such structs accessible from an array,
how would you do?

Answer: See the book for an explanation of flexible array members. Since their
size is unknown they cannot be part of an array. The array should contain
pointers to such structs instead.

5

