
Exam in Optimising Compilers (DAT230/EDA230)

October 22, 2009, 8.00 — 13.00

Examinator: Jonas Skeppstedt

a

b c

d e

f g

h

Figure 1: Control flow graph.

1. (10p) Explain how the Lengauer-Tarjan algorithm (theO(N2)-version) finds the
dominator tree in the control flow graph in Figure 1. For each vertex, your solu-
tion should explain:

• when is the vertex put in a bucket?

• in which bucket?

• when is it deleted from the bucket?

• when does the algorithm find the immediate dominator for thevertex?

2. (5p) What is the dominance frontier of a vertex?

Answer: see the book.

3. (5p) What is control dependence and how is it computed?

Answer: see the book.

4. (10p) Consider again the control flow graph in Figure 1. Suppose there is a use
of variablex in each vertex and an assignment tox in verticesa, c ande. In
verticesa and c the definition is before the use and in vertexe the definition
is after the use.

1



Translate the program to SSA form. Show the contents of the rename stack and
when the stack is pushed and popped.You do not have to show how you compute
the dominance frontiers.

Answer: see the book.

5. (10p) List scheduling is often inferior to software pipelining. Explain why. To
get full points you must show an example of when software pipelining produces
better code than list scheduling.

Answer: because list scheduling only can hide the latency ofinstructions in one
loop iteration and there may not be any independent instructions to execute be-
tween a particular producer and consumer if only instructions from the same
loop iteration are considered. With software pipelining, instructions from other
loop iterations can be used to hide the latency. Consider:

float a[100];
float b[100];
float c[100];
int i;

/* ... */

for (i = 0; i < 100; ++i)
a[i] = b[i] + c[i];

List scheduling will not be able to hide more than perhaps oneor two clock
cycles while software pipelining fully can hide the latencyof the floating point
add and — assuming L1 cache hits — the array accesses.

int f(int* a, int n, int c)
{

int i, s;

s = 0;
for (i = 0; i < n; i++)

s += a[c * i];
return s;

}

Figure 2: C function for question on operator strength reduction.

6. (10p) Explain in principle how operator strength reduction on SSA form opti-
mises the loop in Figure 2. Your description should be based on the SSA-graph
of the code, but you don’t have to explain every detail of the algorithm.

2



Answer:

s0← 0
i0← 0

i1← φ(i0, i2)
s1← φ(s0,s2)

i1 ≥ n0?

t0← c0× i1
t1← t0×4
t2← a0+ t1
t3←M[t2]
s2← s1+ t3
i2← i1+1

The SSA-graph becomes:

0s0

φ(s0,s2)s1

s1+ t3s2 M[t2]
t3

a+ t1t2

t0×4t1

c0× i1t0

0i0

φ(i0, i2)i1

i1+1i2

During the execution of Tarjan’s algorithm, i is classified as an induction vari-

3



able, which leads to its strongly connected component is copied and modified for
t0 as follows:

c0× i0t0
0

φ(t0
0, t

2
0)t1

0

t1
0 +c0t2

0

The use of t0 is changed to instead use t1
0. The computation of t1 now also is a

multiplication of an induction variable and a region constant and the SCC of t0

is copied and modifed for t1:

t0
0×4t0

1

φ(t0
1, t

2
1)t1

1

t1
1 +c0 ∗4t2

1

Then the use of t1 is changed to instead use t1
1. The computation of t2 now is the

sum of an induction variable and a region constant and the SCCof t1 is copied
and modifed for t2:

4



a0+ t0
1t0

2

φ(t0
2, t

2
2)t1

2

t1
2 +c0 ∗4t2

2

The multiplication c0×4 is performed before the loop and saved in a new tem-
porary variable. The resulting program — after DCE — will look as follows:

s0← 0
t4← 4×c0

t0
2 ← a0+0× t4

t5← a0+n0× t4

t1
2 ← φ(t0

2, t
2
2)

s1← φ(s0,s2)

t1
2 ≥ t5?

t3←M[t1
2]

s2← s1+ t3
t2
2 ← t1

2 + t4

7. (10p) Why should a loop transformation matrix be invertible?

Answer: it needs to be invertible when the new loop bounds arecomputed.

5


